Clipping

Sistema faz contagem automática de plantas na lavoura por imagens de drones

Postado em 26 de Abril de 2021

Uma rede colaborativa com professores e pesquisadores de instituições públicas e privadas, nacionais e internacionais, desenvolveu uma solução pioneira no Brasil, que detecta e conta plantas ao mesmo tempo que identifica linhas de plantio em imagens obtidas com drones.

A tarefa é executada graças a uma combinação de técnicas avançadas de visão computacional e aprendizagem profunda (deep learning), capaz de tomar decisões por conta própria. Isso reduz custos e incertezas, facilita a gestão sustentável da lavoura e alavanca o agro 4.0.

Em experimentos com cultivo de milho e citros nas regiões Centro-Oeste e Sudeste, o método alcançou alto índice de acerto no monitoramento de sistemas agrícolas, além de demonstrar versatilidade e permitir a redução da dependência de inspeções visuais, que são demoradas, trabalhosas e tendenciosas.

Outra vantagem em relação aos métodos tradicionais é que a solução proposta permite uma varredura completa do talhão ou da área plantada.

O mapeamento preciso das áreas de cultivo é um pré-requisito importante para auxiliar o gerenciamento do campo e a previsão de produção na chamada agricultura de precisão.

Isso porque as culturas são sensíveis aos padrões de plantio e têm uma capacidade limitada para compensar áreas ausentes em uma linha, o que impacta negativamente o rendimento por unidade de área de solo durante a época de colheita.

Identificar as linhas de plantio pode ajudar os produtores a corrigir problemas ocorridos durante o cultivo de mudas, informação essencial na tomada de decisões.

Por isso, imagens ópticas com sensores embarcados em veículos aéreos não tripulados (Vants) são um meio de baixo custo comumente usados para capturar cenas, cobrindo áreas cultivadas.

A pesquisa

O estudo foi conduzido com plantas de milho, em estádio inicial, mas com alta densidade, em área experimental da Fazenda Escola da Universidade Federal de Mato Grosso do Sul, com aproximadamente 7.435 m².

A pesquisa cobriu um total de 33.360 pés de milho em 224 fileiras de plantas.

O método alcançou alto desempenho para contagem, errando aproximadamente seis plantas por imagem, cada uma com mais de 100 plantas, e desempenho similar na localização e extração de linhas de plantio.

Em citros, o método foi igualmente superior a outras redes neurais previamente desenvolvidas em outros estudos, errando entre uma e duas árvores por imagem.

Em campos de milho, as áreas com falhas podem ser preenchidas por plantas dessa mesma cultura, caso detectadas a tempo de se realizar a intervenção na mesma safra.

Essa condição ocorre em diferentes culturas, como cana-de-açúcar, soja, tomate, entre outras, com características semelhantes.

De olho nessa lacuna, os pesquisadores focaram em uma solução que pudesse ser replicada em outras culturas, não restrita somente aos campos de milho e citros.

Perspectivas futuras

Os cientistas acreditam que pesquisas e aplicações futuras poderão tirar proveito do método desenvolvido para auxiliar redes neurais profundas na contagem simultânea de plantas e detecção de fileiras de plantios em outros tipos de culturas.

"Estamos implementando novos recursos ao método para superar diferentes desafios relacionados aos padrões de plantio. E, também, estamos confiantes com o patamar atual, pois proporciona um aprimoramento nas tarefas de tomada de decisão ao mesmo tempo em que contribui para uma gestão mais sustentável dos sistemas agrícolas", conclui o professor da UFMS José Marcato Junior.

 


Fonte: Money Times (25/04)